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Abstract. Telecommunication companies are evolving in a highly com-
petitive market where attracting new customers is much more expensive
than retaining existing ones. Retention campaigns can be used to prevent
customer churn, but their effectiveness depends on the availability of ac-
curate prediction models. Churn prediction is notoriously a difficult prob-
lem because of the large amount of data, non-linearity, imbalance and
low separability between the classes of churners and non-churners. In this
paper, we discuss a real case of churn prediction based on Orange Bel-
gium customer data. In the first part of the paper we focus on the design
of an accurate prediction model. The large class imbalance between the
two classes is handled with the EasyEnsemble algorithm using a random
forest classifier. We assess also the impact of different data preprocessing
techniques including feature selection and engineering. Results show that
feature selection can be used to reduce computation time and memory
requirements, though engineering variables does not necessarily improve
performance. In the second part of the paper we explore the application
of data-driven causal inference, which allows to infer causal relationships
between variables purely from observational data. We conclude that the
bill shock and the wrong tariff plan positioning are putative causes of
churn. This is supported by the prior knowledge of experts at Orange
Belgium. Finally, we present a novel method to evaluate, in terms of the
direction and magnitude, the impact of causally relevant variables on
churn, assuming the absence of confounding factors.

Keywords: Churn prediction · Machine Learning · Big data · Causal
inference.

1 Introduction

In recent years, the number of mobile phone users increased substantially, reach-
ing more than 3 billion users worldwide. The number of mobile phone service
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subscriptions is actually greater than the number of residents in several coun-
tries, including Belgium [10]. Telecommunication companies are evolving in a
saturated market, where their customers are exposed to competitive offers from
many other companies.

Hadden et al. [8] showed that attracting new customers can be up to six times
more expensive than retaining existing ones. This led companies to switch from a
sale-oriented to a customer-oriented marketing approach. By building customer
relationships based on trustworthiness and commitment, a telecommunication
company can reduce churn, therefore increasing benefits through the subsequent
customer lifetime value.

A typical marketing strategy to improve customer relationship is to conduct
retention campaigns. It is beneficial for the telecommunication company to focus
the retention campaigns only on risky customers, in the hope of preventing
attrition that would otherwise occur if no actions were taken. Churn detection
using machine learning and data mining is nowadays performed by most major
telecommunication companies, and a part of the data mining literature is devoted
to churn prediction [5, 23, 21, 13, 9, 22, 20].

Churn prediction is notoriously a difficult problem because of the large amount
of data, non-linearity, imbalance and low separability between the classes of
churners and non-churners. This first part of this paper assesses several ma-
chine learning methods and strategies in a large set of real historical data about
the churn behavior of Orange Belgium telecom clients. We show that a ma-
chine learning pipeline can successfully predict potential churners, supporting
the design of targeted retention campaigns. Estimating the probability of churn
of a customer is however not sufficient to define an effective campaign if we
do not know which specific incentive to propose to the potential churner. For
this reason, the second part of the paper explores the adoption of causal tech-
niques to infer from observational data the most probable causes of a churn
behavior. Causal analysis is usually conducted through controlled randomized
experiments [6], by evaluating the impact of a potentially causal variable on the
target variable. In the context of customer relationship management, controlled
experiments are possible through the retention campaigns, where the offers made
to the customers act as variable manipulations. Though this reduces the risk of
confounding factors, access to such data is typically difficult and expensive. For
this reason, we have recourse to data-driven inference approaches, which aim to
reconstruct causal dependencies based on the statistical distribution of the con-
sidered variables. Most existing approaches however make different assumptions
about the data distributions which are difficult to assess in practice. For this rea-
son, we adopt a ”wisdom of the crowd” approach by running in parallel several
state-of-the-art approaches and combining their results for final considerations.
Also to assess the quality of the obtained putative causes we estimate from data
the causal impact of every single cause on churn probability.

We may summarize the main contributions of the article as follows.
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– Evaluation of the predictive power of a state-of-the-art churn prediction
model, and the impact of several variations of the model by using differ-
ent features and different type of subscription contracts (Section 2).

– Application of causal strategies to inference putative causes of churn from
observational data (Section 3).

– Assessment of the direction of the impact of putative causal variables on
predictions (Section 3).

The rest of this paper is divided as follows. In Section 2, we describe the
dataset, the machine learning pipeline and the results of churn prediction. In
section 3, we provide a causal analysis of churn. Conclusion and future work
perspectives are discussed in section 4.

2 Churn prediction

This section describes the real dataset and the machine learning pipeline de-
signed to assess a number of strategies and models for predicting the probability
of customer churn.

2.1 Data

The dataset is a monthly report of Orange Belgium customers’ activity covering
a 5 months time window in 2018. For confidentiality reasons, we will disclose
here only some high-level details about the dataset. The dataset contains 73
features about customer activity including the type of subscription, the hard-
ware, the mobile data usage (in MB), the number of calls/messages and some
socio-demographic information. The dataset has 7.6 million entries (about 1.5
million entries per month). The target variable, churn, is binary and takes the
true value if the client is known to have churned in the two months following the
input timestamp. The churn prediction problem is highly imbalanced, meaning
that there are far more non-churners than churners.

Two kinds of subscriptions are present in this dataset: SIM-only3 and loyalty.
The first type refers to a subscription where the customer can quit at any time
with no cost. This is not the case for the second contract type where the customer
receives a large discount on the purchase of a mobile phone but agrees not to
churn for a certain time (e.g. 24 months). If the customer decides nonetheless
to stop his subscription before the term of the contract, he has to pay back the
remaining discount amount. In this paper, we will mainly focus on SIM-only
contracts, given its broader impact on the Orange customer base and the larger
statistical power due to the availability of more samples. Some of the experiments
will nevertheless be conducted on both types of contract, in order to understand
the differences in terms of churn behavior.

3 SIM-only indicates that the customer bought no other product than the SIM card.
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2.2 Machine learning pipeline

The large unbalancedness of the dataset needs to be addressed [4]. Class bal-
ancing is achieved by adopting the EasyEnsemble strategy [11] which consists
in training a number (in our case 10) of learners on the whole set of positive
instances (churners) and on an equally sized random set of negative instances.
Based on our previous experience on related largely unbalanced tasks (notably
fraud detection [3]) we considered as learner only Random Forests. We explored
several alternative configurations in terms of features and learning tasks.

For each time-dependent quantity (e.g. total duration of calls, or mobile data
usage) we created 2 additional features measuring the difference and the ratio
between two consequent monthly values, respectively.

Three learning tasks are considered by stratifying the dataset: one containing
the loyalty contracts, one containing the SIM-only contracts, and one containing
the SIM-only contracts with additional variables (denoted SIM-only ∆).

In what follows we report the results of a number of assessments evaluating
the impact of

1. variable selection, based on the feature importance returned by Random
Forest;

2. the addition of engineered features (e.g. difference and ratio variables);
3. the type of contract (SIM-only vs. loyalty).

The high computational cost of the training on such a large dataset restricts
the number of configurations we can assess. We limit the number of selected
variables to 20, 30 or all variables. Also, we do not explore the difference variables
for loyalty contracts. Overall we consider 9 different experiment configurations.

Three-fold cross-validation is used to assess the accuracy on the training set
(first 4 months). The last month of data is used as a test set for each of the
three datasets, in order to check the robustness of the prediction model (e.g.
with respect to potential drifts or non stationarity).

The performance of the different models is evaluated using three different
measures: the receiver operating characteristic (ROC) curve, the precision-recall
(PR) curve, and the lift curve [19]. While the ROC curve and the PR curve
are widely used in conventional classification, the lift curve is of more practical
interest in evaluating churn prediction. Since a customer churn retention cam-
paign focuses on a limited amount of customers, the lift curve allows observing
the expected performance of the model as the number of customers included
in the campaign varies. From these curves, we derive the area under the ROC
curve (AUROC), the area under the PR curve (AUPRC) and the lift at different
thresholds (1%, 5%, and 10%).

2.3 Results and discussion

Table 1 and 2 report the cross-validation and the test accuracy, respectively. On
the basis of those results, a number of considerations can be made
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– by reducing the number of features to 30, the accuracy does not deteriorate
significantly. This is good news for our industrial partner since a compact
churn model is more suitable for production.

– though adding engineered features may be beneficial, this occurs only if a
feature selection is conducted beforehand.

– surprisingly, the accuracy is higher for the test set (table 2) than in cross-
validation (table 1). Our interpretation, confirmed by a visualization in the
space of the two first principal components, is that the drift of the data
makes the classification easier.

– regarding the type of contracts, churn is slightly easier to predict in the loy-
alty dataset than SIM-only, due to the greater importance of time-related
variables. Indeed, the churn is significantly higher at the end of the manda-
tory period of a loyalty contract, facilitating the prediction process.

We compared our results on the SIM-only dataset with other published stud-
ies on churn prediction [5, 23, 21, 13, 9, 22, 20]. We achieve similar results in terms
of area under the ROC curve and lift.

SIM-only SIM-only ∆ Loyalty

20 30 All 20 30 All 20 30 All

AUROC 0.64 0.73 0.74 0.74 0.74 0.70 0.76 0.78 0.77
AUPRC 0.04 0.08 0.08 0.09 0.09 0.07 0.13 0.16 0.15
Lift at 10% 2.10 3.16 3.39 3.39 3.44 3.01 3.22 3.57 3.50
Lift at 5% 2.41 4.11 4.52 4.49 4.57 3.90 3.71 4.30 4.18
Lift at 1% 3.24 7.58 8.36 8.80 8.67 6.79 5.00 6.37 6.11

Table 1. Summary of the cross-validation results. Highest values for each type of
contract and for each evaluation measure are underlined.

SIM-only SIM-only ∆ Loyalty

20 30 All 20 30 All 20 30 All

AUROC 0.66 0.73 0.73 0.72 0.73 0.69 0.74 0.76 0.76
AUPRC 0.05 0.10 0.10 0.10 0.10 0.08 0.15 0.19 0.18
Lift at 10% 2.25 3.34 3.41 3.27 3.42 3.03 2.96 3.40 3.30
Lift at 5% 2.64 4.49 4.68 4.48 4.67 4.09 3.51 4.22 4.02
Lift at 1% 4.29 9.20 9.53 10.09 9.95 7.67 4.66 6.65 6.16

Table 2. Summary of the results of prediction experiments on the test set. Highest
values for each type of contract and for each evaluation measure are underlined. Using
only 20 variables decreases the performances most often.



6 T. Verhelst et al.

3 Causal analysis

The variable selection procedure discussed in the previous section returns which
variables are relevant for predicting the clients most likely about to churn.
Though this information is useful for designing a good predictor, it is not neces-
sarily useful in the perspective of an intervention (e.g. incentive) to reduce the
churn risk. For example, an increase in the number of contracts registered by a
customer may be strongly associated with a decrease of churn. However, a hypo-
thetical churn retention action that would sell additional contracts might fail, if
customer satisfaction has a causal effect both on the number of purchased con-
tracts and the propensity to churn. In this case, the predictive variable (number
of contracts) and the churn have a common latent cause (customer satisfaction).
Manipulating the number of contracts will therefore not affect on churn. Differ-
ent tools are needed to discover true causal relationships between variables and
will be discussed in what follows.

3.1 Causal inference strategy

We use the same dataset as in section 2, restricting ourselves to SIM-only con-
tracts since it is supposed that the causes of churn are at least partially different
between loyalty and SIM-only contracts. All 5 months of data are used. To de-
crease computation time, only the first 30 variables in the ranking of the random
forest trained in section 2 are used. A random subsampling has been applied to
reach decent computation times and to perform class balancing.

The overall scheme of this experiment consists in applying several causal
inference techniques, which give different types of results in various forms, and
extract a consensus, if any, in the light of the different assumptions each model
puts on the data. Indeed, all causal inference methods are based on different
assumptions, and the ability of a given method to infer causal patterns from
observational data lies upon these assumptions.

More specifically, we use these state-of-the-art causal inference algorithms:
PC [17], Grow-shrink (GS) [12], Incremental Association Markov Blanket (IAMB)
[18], Minimum interaction maximum relevance (mIMR) [2] and D2C [1].

The PC [17] algorithm is slow when the number of samples is large since the
whole network is inferred. Therefore, we restrict the dataset to 10,000 samples
for this algorithm. The result is given under the form of a directed acyclic graph.

The GS and IAMB algorithms [12, 18] both infer the Markov blanket of a
target variable, the churn in our case. However, it is left unspecified how the
members of the inferred Markov blanket causally relate to the target variable.
For these two algorithms, the entire set of positive samples is used, along with
a subset of the same size of negative samples.

Two implementations of the mIMR algorithm [2] are used: one based on his-
tograms to estimate mutual information, and another assuming Gaussian vari-
ables, thus allowing a closed-form formula for the computation of the mutual
information [14]. For the first implementation, the dataset is restricted to 10,000
samples, due to the computational cost of the histogram-based estimator. In the
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second implementation, 100,000 samples are used. The results are provided as a
list of the first 15 selected variables, accompanied by the gain provided by each
variable at each iteration of the algorithm.

The D2C learning algorithm is trained using randomly generated DAGs, as
described in [1]. We assume a Markov blanket of 4 variables when constructing
the asymmetrical features. Given the high computational cost of feature extrac-
tion, 2,000 samples are used from the customer dataset. The results are provided
as the predicted probability for each variable to be a cause of churn.

For the first three methods (PC, IAMB, and GS), we use the R package
bnlearn [16] for independence tests using mutual information and asymptotic χ2

test [7]. For mIMR and D2C, we use the R package D2C [1]. In all cases, a false
positive rate of 0.05 is chosen for statistical tests of independence.

3.2 Sensitivity analysis

Besides the inference of causally relevant variables, we also present a novel
method that evaluates the sensitivity of the target to these relevant variables.
Consider a predictive algorithm such as a random forest used in section 2.
The goal of such an algorithm is to estimate the probability distribution of
the churn variable Y given the set of customer variables {X1, . . . , Xn} = X,
that is, P (Y |X). Let us consider a variable Xi ∈ X, and assume, for the sake
of simplicity, that Xi is a cause of Y without any confounding factor. In order
to assess the sensitivity of Y to Xi, we consider how the learning algorithm
modifies its estimation of P (Y |X) when the distribution of Xi is modified. Be-
cause of the absence of confounding, this is a correct estimation of the effect of
a manipulation do(Xi) [15].

In order to quantify the influence of Xi on the distribution of Y , we compute
the difference in the expected value of Y with and without the intervention
do(Xi). We simulate do(Xi) by adding or subtracting a standard deviation from
all instances of Xi in a test dataset. More practically, given a dataset of n

numerical variables and N examples {(x(j)1 , . . . , x
(j)
n ; y(j))}1≤j≤N , the average

prediction of a model f on this dataset is

M =
1

N

N∑
j=1

f(x
(j)
1 , . . . , x(j)n )

For each variable i ∈ {1, . . . , n} in this dataset, we compute the shifted average
prediction

M±
i =

1

N

N∑
j=1

f(x
(j)
1 , . . . , x

(j)
i−1, x

(j)
i ± σi, x

(j)
i+1, . . . , x

(j)
n )

where σi is the standard deviation of variable i. The differences M −M+
i and

M−M−
i indicate the impact of a small modification of variable i on churn predic-

tions. We applied this method on the 30 variables having the largest importance
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according to the random forest models. The assumption of no confounding may
not be met for all these variables, but it has the benefit of simplifying the anal-
ysis. Moreover, we can disregard non-causal associations using the results of the
causal inference experiments. Note that the dataset we use in practice also con-
tains discrete variables. These variables are left out of this analysis, since the
method is suited only to continuous variables.

3.3 Prior knowledge

Before presenting the results of causal inference, it is interesting to summarize
the knowledge of the Orange experts on the possible reasons for customer churn,
elicited by means of several discussions and interviews. Those experts report four
main causes of churn:

Bill shock this occurs when a customer has an unusually large service usage,
which results in an important “out of bundle” amount (i.e. the client is
charged much more than usual). This triggers a reaction from the customer
inducing an increased risk of churn. This scenario is well understood and
verified in practice. It is believed to be the most important cause of churn.

Customer dissatisfaction Multiple factors influence customer satisfaction, in-
cluding quality of service and network quality. A customer having numerous
cuts of network connection during phone calls, or unable to use properly Or-
ange online services, will be more likely to seek better alternatives elsewhere.

Wrong positioning Choosing the right tariff plan suited to one’s service usage
habits is sometimes difficult. On the one hand, if not enough call time is
provisioned, an “out of bundle” amount is likely to be charged at the end
of the month. On the other hand, an expensive tariff plan results in a high
fixed cost for the customer. When the needs of a customer do not correspond
to the chosen tariff plan, we say that the customer is wrongly positioned. A
wrong positioning results in most cases to a higher bill than expected, and
is a significant cause of churn.

Churn due to a move It is common to choose a product bundle from a telecom-
munication company comprising a subscription for mobile phone, landline
phone, television, and internet connection. In this case, the subscription is
tied to the particular place of domicile of the customer. When the client
moves to another place, it is quite common to also change for another
telecommunication service provider. Therefore, this is a significant cause of
churn, albeit of a different nature from the other settings exposed above.

These different settings are described informally, and their translation to the
formal definitions of causality is not straightforward. We wish to find a mapping
between the events believed to be causes of churn and specific instantiations of
measurable random variables. In the case of the first setting, we can reasonably
assume that variables measuring the “out of bundle” amount of the customer is
a faithful proxy for bill shock. Similarly, customer satisfaction can be estimated
using, for example, the number of network cuts during phone calls, or the number
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of calls to the customer service. The wrong positioning can also be numerically
estimated, given the tariff plan of the client and its average service usage. The
last setting (churn due to a move) is much more difficult to account for, as it is not
directly related to the interaction between the client and the telecommunication
services.

In the dataset available for this study, the only measured variables that trans-
late to potential causes of churn are the “out of bundle”, the tariff plan and ser-
vice usage (phone calls, messages, mobile data). We have no measure for network
quality, customer satisfaction, or propensity to move soon. Also, the wrong po-
sitioning is not explicitly encoded and has to be inferred by the causal inference
model from the average service usage and the current tariff plan.

Expert knowledge also indicates that the tenure (the time since when a cus-
tomer uses Orange’ services) has a significant influence on churn. A new customer
is more likely to churn than a long-time customer since it is less committed to
the company.

3.4 Results of causal inference

The outcome of the inference algorithms is summarized in Figure 1. Each of
the possible causes of churn is represented by an ellipse, annotated with the
algorithms that output this variable. The PC algorithm infers an intricate causal
graph, but where the churn variable is disconnected from all others. Note that
GS and IAMB output the Markov blanket, and not only direct causes. Since
the output of mIMR is a ranking, we use background knowledge to determine
how many of the top-ranked variables should be considered as inferred causes,
based on their redundancy. In the case of the histogram-based mIMR, the first
9 variables in the ranking are complementary, but the 10th variable is mostly
redundant with the 9th one. This indicates that the variable interaction is low
and the remaining variables in the ranking should not be considered as causes.
For the mIMR with Gaussian assumption, there is a significant drop in the gain
between the 7th and the 8th ranked variables. We consider that as a criterion
for considering only the 7 first ranked variables as inferred causes. D2C outputs
a probability of being a cause of churn, for each variable. We selected the tariff
plan, the province of residence and the data usage as causes inferred by D2C
since the remaining variables display a significantly lower predicted score.

The “out of bundle” and data usage variables are reported as causes by mIMR
and D2C, and as members of the Markov blanket by GS. This is in line with
our prior belief that the bill shock is a major cause of churn. We could expect
the “out of bundle” variable to stand out more explicitly, but it is only given
by mIMR with Gaussian assumption. However, the distribution of the “out of
bundle” can roughly be modeled as the exponential of a Gaussian. It is thus easy
to understand why the other inference methods, that make different statistical
assumptions, fail to report the causal link to churn.

The tariff plan and the “out-of-bundle” variables together provide a repre-
sentation of the tariff plan positioning of the customer. These two variables are
reported as causes of churn by mIMR and D2C and are also members of the
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Churn

Tenure

Tariff plan

Out of bundle

Data usage

Number contracts

Age

Messages, voice calls

Province

GS, mIMR 1 & 2

IAMB, mIMR 1, D2C

GS

mIMR 2

mIMR 1, D2C

GS, mIMR 1, D2C

GS, mIMR 2

GS, mIMR 2

Fig. 1. Summary of results of causal inference. Each variable is annotated with the
algorithms predicting it to be a cause of churn. Yellow ellipses represent continu-
ous variables, and blue ellipses represent discrete variables. mIMR 1 stands for the
histogram-based estimator, and mIMR 2 for the estimator with Gaussian assumption.

Markov blanket according to GS and IAMB. This confirms our hypothesis that
wrong positioning is an important cause of churn.

The two last causes of churn according to section 3.3 are customer satisfaction
and churn due to a move. None of the measured variables are direct proxies for
these two putative explanations of churn. Better results could be obtained by
using relevant variable such as, for example, the number of calls to the customer
service, a measure of the network quality, the number of network cuts during a
call, and so on. Adding these variables would reduce latent confounding if the
underlying causal hypotheses are true. However, the scope of this study limited
us to the set of variables presented in section 2.1.

If we use the expert knowledge to assess the accuracy of the causal inference
algorithms, mIMR 1 and D2C algorithms seem to better infer relevant variables
as direct causes. Indeed, the bill shock and the wrong positioning imply that the
“out of bundle”, the tariff plan and the data usage are likely causes of churn. The
two latter are output by mIMR 1 and D2C, whereas mIMR 2 outputs the “out
of bundle”. A model similar to mIMR 1 or D2C, but able to correctly handle
variables with an exponential distribution such as the “out of bundle”, would be
ideal.

Finally, it is important to consider that these results may suffer from sam-
pling bias. Given that we use a crude random undersampling technique, some
causal patterns in the discarded positive samples may be under-represented in
the resulting training set. This is especially the case for the PC algorithm (us-
ing 10,000 samples), the first implementation of mIMR (10,000 samples), and
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D2C (2,000 samples). And even though the remaining algorithms use far more
samples, none of them can take into account the entire set of non-churners. Fur-
thermore, we have no theoretical guarantee that an even class ratio is best for
inferring causal patterns. Reducing sampling bias in causal analysis requires the
conception of new techniques that are outside the scope of this article.

3.5 Results of sensitivity analysis

The results of the variable sensitivity analysis are shown in figures 2 and 3. Each
variable is represented as a bar whose color depends on the category of variable:
subscription (yellow), calls and messages (blue), mobile data usage (green), rev-
enue (purple), customer hardware (pink), and socio-demographic (orange). Some
variables names have been anonymized for confidentiality reasons. Also, variables
inducing a negligible shift in average predicted churn probability (respectively
less than 0.01 and 0.005 for figures 2 and 3) are not reported.

All the numerical variables inferred as possible causes of churn appear to
influence the predictions of the model, albeit in a non-linear manner as indi-
cated by the lack of symmetry between figures 2 and 3. On the one hand, the
tenure and the number of contracts (in yellow) are observed to be monotoni-
cally associated with the churn probability, since they appear in both figures
in opposite directions. On the other hand, variables related to the amount paid
by the customer (in purple) and the data usage (green) cause more churn when
they are increased, but the opposite is not true. Note that the tariff plan and
the province, although reported as possible causes in figure 1, are not present in
figures 2 and 3 since they are categorical, thus unsuitable for the application of
this algorithm.

Number contracts 2
Number contracts 3

Tenure 1
Tenure 2

R7
U3

U16
R2
U2

Age
OOB 4

U1
R1
S7
U4
S8
R6
R5

OOB 3
OOB 1
OOB 2

−0.06 −0.04 −0.02 0.00 0.02
Difference of churn rate

Fig. 2. Difference in the predicted proba-
bility of churn when a standard deviation
is added separately to each variable. Run
on the SIM only dataset. Only variables
inducing a difference having an absolute
value greater than 0.01 are shown.

C2

C8

S2

H16

H15

C7

C5

Tenure 2

Tenure 1

C6

Number contracts 2

D13

Number contracts 3

0.00 0.05 0.10 0.15
Difference of churn rate

Fig. 3. Difference in the predicted prob-
ability of churn when a standard devia-
tion is subtracted separately from each
variable. Run on the SIM-only dataset.
Only variables inducing a difference hav-
ing an absolute value greater than 0.005
are shown.
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4 Conclusion

Churn prediction in the telecommunication industry is notoriously a hard task
characterized by the non-linearity of variables, large overlap between churn-
ers and non-churners, and class imbalance. Predictive modeling of churn was
achieved with a random forest classifier and the Easy Ensemble algorithm. In
a series of experiments on churn prediction, we assessed the impact of variable
selection, type of contract and use of engineered features. The results show that
variable selection helps reducing computation time if at least 30 features are se-
lected. Also, the engineering of new features may be beneficial if variable selection
is applied. We explored the application of causal inference from observational
data. More specifically, we applied 5 different causal inference methods, namely
PC, Grow-Shrink (GS), Incremental Association Markov Blanket (IAMB), min-
imum Interaction Maximum Relevance (mRMR), and D2C. The results of these
algorithms are varied and are consistent with prior knowledge of the causes of
churn. The direction of the causal influence of variables on churn is estimated
through a novel method of sensitivity analysis. This method is based on the
assumption that no latent variables are confounding factor of churn and the
variable under inspection. This method shows that some variables have a non-
monotonic causal influence on churn, which is consistent with expert knowledge.
Results of causal analysis are difficult to validate without the ability to perform
experiments. In this study, we are limited to compare our findings with prior
knowledge of experts. Retention campaigns provide a promising opportunity to
validate causal hypothesis. They can emulate a variable manipulation by offer-
ing risky customers targeted promotions. We plan to conduct such experiments
in the future through a collaboration with the direct marketing department of
Orange Belgium.
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